

COMPUTER ORIENTED STATISTICAL METHODS (MA303BS) COURSE PLANNER

I. COURSE OVERVIEW:

The students will improve their ability to think critically, to analyze a real problem and solve it using a wide array of mathematical tools. They will also be able to apply these ideas to a wide range of problems that include the Engineering applications.

II. PREREQUISITE:

- 1. Basic knowledge of Probability.
- 2. Basic knowledge of Statistics.
- 3. Basic knowledge of calculation of basic formulas.
- 4. Basic knowledge of permutations and combinations.
- 5. Mathematics courses of first year of study.

III. COURSE OBJECTIVE: To learn

1.	The theory of Probability, and probability distributions of single and multiple random
	variables.
2.	The sampling theory and testing of hypothesis and making inferences.
3.	Stochastic process and Markov chains.

IV.COURSE OUTCOMES: After learning the contents of this paper the student must be able to

No	Description	Bloom's Taxonomy Level
1.	Understand the concepts of probability and	L1: Remember
	distributions to some case studies.	L2: Understand
2.	Evaluate Mathematical Expectation and Discrete	L1: Remember
	Probability Distributions.	L2: Understand
3.	Apply Continuous Normal Distribution and	L3: Apply
	Fundamental Sampling Distributions.	
4.	Analyze testing hypothesis of Sample Mean and	L3: Apply
	Sample Proportion.	
5	Understand the concept of Stochastic Processes	L1: Remember
	and Markov Chains.	L2: Understand

V. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Level	Proficiency
			Assessed by
	Engineering knowledge : To Apply the knowledge of		
	mathematics, science, engineering fundamentals, and		Assignments,
PO1	Computer Science Engineering to the solution of complex	3	Tutorials and
	engineering problems encountered in modern engineering		Mock Exams.
	Problem analysis : Ability to Identify, formulate, review		Assignments,
	research literature, and analyze complex engineering	2	Tutorials and
PO2	problems related to Computer Science reaching substantiated		Exams.
	conclusions using first principles of mathematics, natural		

		Z	ANTINO METRI BYROLO (COLUMNIA)
	Design/development of solutions: Design solutions for		
	complex engineering problems and design system	-	
PO3	components or processes that meet the specified needs with		
	appropriate consideration for the public health and safety, and		
	Conduct investigations of complex problems: Use research-		
PO4	based knowledge and research methods including design of	-	
	experiments, analysis and interpretation of data, and synthesis		
	Modern tool usage: Create, select, and apply appropriate		
PO5	techniques, resources, and modern Computer Science	-	
	Engineering and IT tools including prediction and modeling		
	The engineer and society: Apply reasoning informed by the		
	contextual knowledge to assess societal, health, safety, legal		
	and cultural issues and the consequent responsibilities		
	Environment and sustainability: Understand the impact of	-	
101	Computer Science Engineering professional engineering		
	solutions in societal and environmental contexts, and		
	demonstrate the knowledge of and need for sustainable Ethics : Apply ethical principles and commit to professional		
1 (70	ethics and responsibilities and norms of the engineering	-	
	Individual and team work: Function effectively as an		
PO9	individual, and as a member or leader indiverse teams, and in	-	
	multidisciplinary settings.		
	Communication: Communicate effectively on complex	-	
$\mathbf{D}\mathbf{\Omega}1\mathbf{\Omega}$	engineering activities with the engineeringcommunity and		
	with society at large, such as, being able to comprehend and		
	write effective reports and design documentation, make		
	Project management and finance: Demonstrate knowledge		
PO11	and understanding of theengineering and management	-	
	principles and apply these to one's own work, as a member		
	and leader in a team to manage projects and in Life-long learning : Recognize the need for, and have the		
DO13	preparation and ability to engage inindependent and life-long	_	
	1 1		
1: Sligh	t (Low) 2: Moderate 3: Substantial (High)	4: None

VI. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

(Medium)

Program Specific Outcomes	Level	Proficiency
		assessed by
indation of mathematical concepts: To use mathematical		Assignments,
PSO1 methodologies to crack problem using suitable	2	Tutorials and
mathematical analysis, data structure and suitable		Exams.

		E	
	Foundation of Computer System: The ability to interpret		
PSO2	the fundamental concepts and methodology of computer	-	
	systems. Students can understand the functionality of		
	Foundations of Software development: The ability to		
200	grasp the software development lifecycle and		
PSO3	methodologies of software systems. Possess competent	-	
	skills and knowledge of software design process.		
	Familiarity and practical proficiency with a broad area of		

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) 4: None VII. SYLLABUS:

UNIT - I

Probability: Sample Space, Events, Counting Sample Points, Probability of an Event, Additive Rules, Conditional Probability, Independence, and the Product Rule, Bayes' Rule.

Random Variables and Probability Distributions: Concept of a Random Variable, Discrete Probability Distributions, Continuous Probability Distributions, Statistical Independence.

UNIT - II

Mathematical Expectation: Mean of a Random Variable, Variance and Covariance of Random Variables, Means and Variances of Linear Combinations of Random Variables, Chebyshev's Theorem.

Discrete Probability Distributions: Introduction and Motivation, Binomial, Distribution, Geometric Distributions and Poisson distribution.

UNIT - III

Continuous Probability Distributions: Continuous Uniform Distribution, Normal Distribution, Area sunder the Normal Curve, Applications of the Normal Distribution, Normal Approximation to the Binomial, Gamma and Exponential Distributions.

Fundamental Sampling Distributions: Random Sampling, Some Important Statistics, Sampling Distributions, Sampling Distribution of Means and the Central Limit Theorem, Sampling Distribution of S2, t—Distribution, F-Distribution.

UNIT - IV

Estimation & Tests of Hypotheses: Introduction, Statistical Inference, Classical Methods of Estimation.: Estimating the Mean, Standard Error of a Point Estimate, Prediction Intervals, Tolerance Limits, Estimating the Variance, Estimating a Proportion for single mean, Difference between Two Means, between Two Proportions for Two Samples and Maximum Likelihood Estimation.

Statistical Hypotheses: General Concepts, Testing a Statistical Hypothesis, Tests Concerning a Single Mean, Tests on Two Means, Test on a Single Proportion, Two Samples: Tests on Two Proportions.

UNIT - V

Stochastic Processes and Markov Chains: Introduction to Stochastic processes- Markov process. Transition Probability, Transition Probability Matrix, First order and Higher order

Markov process, n-step transition probabilities, Markov chain, Steady state condition, Markov analysis.

GATE SYLLABUS:

Section1: Engineering Mathematics

Discrete Mathematics: Propositional and first order logic. Sets, relations, functions, artial orders and lattices. Groups. Graphs: connectivity, matching, coloring. Combinatorics:counting, recurrence relations, generating functions.

Linear Algebra: Matrices, determinants, system of linear equations, eigen values and eigenvectors, LU decomposition.

Calculus: Limits, continuity and differentiability. Maxima and minima. Mean value theorem. Integration.

Probability: Random variables. Uniform, normal, exponential, poisson and binomial distributions. Mean, median, mode and standard deviation. Conditional probability and Bayes theorem.

Section 2: Digital Logic

Boolean algebra. Combinational and sequential circuits. Minimization. Number representations and computer arithmetic (fixed and floating point).

Section 3: Computer Organization and Architecture

Machine instructions and addressing modes. ALU, data-path and control unit. Instruction

pipelining.

Memory hierarchy: cache, main memory and secondary storage; I/O interface (interrupt and DMA mode).

Section 4: Programming and Data Structures

Programming in C. Recursion. Arrays, stacks, queues, linked lists, trees, binary search trees, binary heaps, graphs.

Section 5: Algorithms

Searching, sorting, hashing. Asymptotic worst case time and space complexity. Algorithm design techniques: greedy, dynamic programming and divide-and-conquer. Graph search, minimum spanning trees, shortest paths.

Section 6: Theory of Computation

Regular expressions and finite automata. Context-free grammars and push-down automata. Regular

and contex-free languages, pumping lemma. Turing machines and undecidability.

Section 7: Compiler Design

Lexical analysis, parsing, syntax-directed translation. Runtime environments. Intermediate code generation.

Section 8: Operating System

Processes, threads, inter-process communication, concurrency and synchronization. Deadlock.

scheduling. Memory management and virtual memory. File systems.

Section 9: Databases

ER-model. Relational model: relational algebra, tuple calculus, SQL. Integrity constraints, normal forms. File organization, indexing (e.g., B and B+ trees). Transactions and concurrency control.

Section 10: Computer Networks

Concept of layering. LAN technologies (Ethernet). Flow and error control techniques, switching. IPv4/IPv6, routers and routing algorithms (distance vector, link state). TCP/UDP and sockets,

congestion control. Application layer protocols (DNS, SMTP, POP, FTP, HTTP). Basics of Wi-Fi. Network security: authentication, basics of public key and private key cryptography, digital signatures and certificates, firewalls.

IES SYLLABUS:

Matrix: Matrix theory, Eigen values & Eigen vectors, system of linear equations

Differential Equations: Numerical methods for solution of non-linear algebraic equations and

differential equations

Partial differential equations: Partial derivatives, linear, nonlinear and partial differential equations, initial and boundary value problems

VIII. LESSON PLAN-COURSE SCHEDULE:

Session	Week No	Unit	ТОРІС	Link for PPT	Link for PDF	Course learning outcomes	Teaching Methodologi es	Reference
					UNIT –	1		
1.		1	Introduction to probability	https://drive.g oogle.com/dri ve/folders/1P7 4qitEpsYrwhtl e- Q4R2_QuLQ 2iJakL?usp=s haring	https://driv e.google.co m/drive/fol ders/1P74q itEpsYrwht le- Q4R2_Qu LQ2iJakL? usp=sharin g	Define probability	Talk & Chalk	T1,T2, R1
2.	1		Sample Space, Events, Counting Sample Points	https://drive.go ogle.com/drive/ folders/1P74qit EpsYrwhtle- Q4R2_QuLQ2i JakL?usp=shari ng	https://drive. google.com/ drive/folder s/1P74qitEp sYrwhtle- Q4R2_QuL Q2iJakL?us p=sharing	Define sample point, event and sample space	Talk & Chalk	T1,T2, R1
3.			Probability of an Event, Additive Rules	https://drive.go ogle.com/drive/ folders/1P74qit EpsYrwhtle- Q4R2_QuLQ2i JakL?usp=shari ng	https://drive. google.com/ drive/folder s/1P74qitEp sYrwhtle- Q4R2_QuL Q2iJakL?us p=sharing	Solve problems on additive rule	Talk & Chalk	T1,T2, R1
4.			Conditional	https://drive.go	https://drive.	Solve	Talk &	T1,T2,

					2	VALUE BASIO EQUICATION	
		Probability,	ogle.com/drive/	google.com/	problems on	Chalk	R1
			folders/1P74qit	drive/folder	conditional		
			EpsYrwhtle-	s/1P74qitEp	probability		
			Q4R2_QuLQ2i	sYrwhtle-			
			JakL?usp=shari	Q4R2_QuL			
			ng	Q2iJakL?us			
				p=sharing			
5.			https://drive.go	https://drive.	Understand		T1,T2,
			ogle.com/drive/	google.com/	application of		R1
		Independence	folders/1P74qit	drive/folder	product and		
			EpsYrwhtle-	s/1P74qitEp	independence	Talk &	
		and the Product	Q4R2_QuLQ2i	sYrwhtle-		Chalk	
		Rule	JakL?usp=shari	Q4R2_QuL	rule		
			ng	Q2iJakL?us			
				p=sharing			
6.			https://drive.go	https://drive.	Solve		
			ogle.com/drive/	google.com/	problems on		
			folders/1P74qit	drive/folder	probability		
		Problems on	EpsYrwhtle-	s/1P74qitEp	probability	Talk &	T1,T2,
		probability	Q4R2_QuLQ2i	sYrwhtle-		Chalk	R1
		producting	JakL?usp=shari	Q4R2_QuL		Chanc	
			ng	Q2iJakL?us			
			===	p=sharing			
7.	2		https://drive.go	https://drive.	Solve		
'	2		ogle.com/drive/	google.com/	problems on		
			folders/1P74qit	drive/folder	*		
			EpsYrwhtle-	s/1P74qitEp	bayes theorem	Talk &	T1,T2,
		Bayes' Rule.	Q4R2_QuLQ2i	sYrwhtle-		Chalk	R1
			JakL?usp=shari	Q4R2_QuL		Chaix	KI
			ng	Q2iJakL?us			
			<u></u>	p=sharing			
8.			https://drive.g	https://driv	Define		T1,T2,
0.			oogle.com/dri	e.google.co	random		R1
			ve/folders/1P7	m/drive/fol	variable		IX1
		Concept of a	4qitEpsYrwhtl	ders/1P74q			
		*	<u>e-</u>	itEpsYrwht		Talk &	
		Random	Q4R2_QuLQ	le-		Chalk	
		Variable	2iJakL?usp=s	Q4R2_Qu			
			haring	LQ2iJakL?			
				usp=sharin			
				g			
9.		Digonata	https://drive.go	https://drive.	Solve		
		Discrete	ogle.com/drive/	google.com/	problems on	Talk &	T1,T2,
		Probability	folders/1P74qit	drive/folder	discrete	Chalk	R1
		Distribution	EpsYrwhtle-	s/1P74qitEp	probability		-
\sqsubseteq					Probability		

			_			VALUE BACKS EDUCATOR	
	3		Q4R2_QuLQ2i	sYrwhtle-	distribution		
			<u>JakL?usp=shari</u>	Q4R2 QuL			
			ng	Q2iJakL?us			
				<u>p=sharing</u>			
10.			https://drive.go	https://drive.	Solve		
			ogle.com/drive/	google.com/	problems on		
		Continuous	folders/1P74qit	drive/folder	continuous		
		Probability	EpsYrwhtle-	s/1P74qitEp	probability	Talk &	T1,T2,
		Distribution	Q4R2_QuLQ2i	sYrwhtle-	distribution	Chalk	R1
		Distribution	JakL?usp=shari	Q4R2_QuL			
			ng	Q2iJakL?us			
				p=sharing			
11.			https://drive.go	https://drive.	Solve		T1,T2,
			ogle.com/drive/	google.com/	problems on		R1
		D 11	folders/1P74qit	drive/folder	probability	m 11 °	
		Problems on	EpsYrwhtle-	s/1P74qitEp	distributions	Talk &	
		distributions	Q4R2_QuLQ2i	sYrwhtle-		Chalk	
			<u>JakL?usp=shari</u>	Q4R2_QuL			
			ng	Q2iJakL?us			
				p=sharing			
12.			https://drive.go	https://drive.	Solve		
			ogle.com/drive/	google.com/	problems on		
		Ctatistics 1	folders/1P74qit	drive/folder	statistical	Tr - 11 - 0	T1 T2
		Statistical	EpsYrwhtle-	s/1P74qitEp	independence	Talk &	T1,T2,
		Independence	Q4R2_QuLQ2i	sYrwhtle-		Chalk	R1
			<u>JakL?usp=shari</u>	Q4R2_QuL			
			ng	Q2iJakL?us			
12			1.44	p=sharing	TT 1 4 1		
13.		* Applications	https://drive.go	https://drive.	Understand		
		of	ogle.com/drive/ folders/1P74qit	google.com/	applications		
		Expectations	EpsYrwhtle-	drive/folder s/1P74qitEp		Talk &	
		of any event	Q4R2_QuLQ2i	sYrwhtle-		Chalk	
		(content	JakL?usp=shari	Q4R2_QuL		Chair	
		beyond	ng	Q2iJakL?us			
		syllabus)	ing.	p=sharing			
			https://drive.go	https://drive.			
			ogle.com/drive/	google.com/			
			folders/1P74qit	drive/folder			
			EpsYrwhtle-	s/1P74qitEp			
		Mock Test – I	Q4R2_QuLQ2i	sYrwhtle-			
			JakL?usp=shari	Q4R2_QuL			
			ng	Q2iJakL?us			
			<u></u>	p=sharing			
<u></u>				p-snaring			

	TINITE A										
				UNIT	1						
]			Mathematical Expectation	https://drive.go ogle.com/drive/ folders/1P74qit EpsYrwhtle- Q4R2_QuLQ2i JakL?usp=shari ng	https://drive. google.com/d rive/folders/1 P74qitEpsYr whtle- Q4R2_QuLQ 2iJakL?usp=s haring	Find mathematical expectation	Talk & Chalk	T1,T3, R2			
1			Mean of a Random Variable	https://drive.go ogle.com/drive/ folders/1P74qit EpsYrwhtle- Q4R2 QuLQ2i JakL?usp=shari ng	https://drive. google.com/d rive/folders/1 P74qitEpsYr whtle- Q4R2 QuLQ 2iJakL?usp=s haring	Solve problems on mean	Talk & Chalk	T1,T3, R2			
1	4	2	Variance and Covariance of RandomVariabl es	https://drive.go ogle.com/drive/ folders/1P74qit EpsYrwhtle- Q4R2_QuLQ2i JakL?usp=shari ng	https://drive. google.com/d rive/folders/1 P74qitEpsYr whtle- Q4R2 QuLQ 2iJakL?usp=s haring	Solve problems of variance and covariance	Talk & Chalk	T1,T3, R2			
1			Means and Variances of Linear Combinations of Random Variables	https://drive.go ogle.com/drive/ folders/1P74qit EpsYrwhtle- Q4R2_QuLQ2i JakL?usp=shari ng	https://drive. google.com/d rive/folders/1 P74qitEpsYr whtle- Q4R2_QuLQ 2iJakL?usp=s haring	Solve problems on mean and variance of linear combination of random variables	Talk & Chalk	T1,T3, R2			
1	5		Means and Variances of Linear Combinations of Random Variables	https://drive.go ogle.com/drive/ folders/1P74qit EpsYrwhtle- Q4R2_QuLQ2i JakL?usp=shari ng	https://drive. google.com/d rive/folders/1 P74qitEpsYr whtle- Q4R2_QuLQ 2iJakL?usp=s haring	Solve problems on mean and variance of linear combination of random variables	Talk & Chalk	T1,T3, R2			
1			Chebyshev's Theorem	https://drive.go ogle.com/drive/	https://drive. google.com/d	Apply Chebyshev's	Talk & Chalk	T1,T3, R2			

		1	1	1	T	V	CHILLIE BASIC GOLUCION	,
				folders/1P74qit	rive/folders/1	Theorem		
				EpsYrwhtle-	P74qitEpsYr			
				Q4R2 QuLQ2i	whtle-			
				<u>JakL?usp=shari</u>	Q4R2_QuLQ			
				<u>ng</u>	2iJakL?usp=s			
					<u>haring</u>			
1				https://drive.go	https://drive.	Find		
				ogle.com/drive/	google.com/d	Discrete		
			Discrete	folders/1P74qit	rive/folders/1	Probability		
				EpsYrwhtle-	P74qitEpsYr	Distribution	Talk &	T1,T3,
			Probability	Q4R2 QuLQ2i	whtle-	Distribution	Chalk	R2
			Distribution	JakL?usp=shari	Q4R2_QuLQ			
				ng	2iJakL?usp=s			
					haring			
2				https://drive.go	https://drive.	Define		T1,T3,
				ogle.com/drive/	google.com/d	motivation		R2
				folders/1P74qit	rive/folders/1	inoti vation		112
			Introduction	EpsYrwhtle-	P74qitEpsYr		Talk &	
			and Motivation	Q4R2_QuLQ2i	whtle-		Chalk	
				JakL?usp=shari	Q4R2_QuLQ		O Table	
				ng	2iJakL?usp=s			
					haring			
21.				https://drive.go	https://drive.	Apply		
				ogle.com/drive/	google.com/d	Binomial		
				folders/1P74qit	rive/folders/1	Distribution		
			Binomial	EpsYrwhtle-	P74qitEpsYr	Distribution	Talk &	T1,T3,
			Distribution	Q4R2_QuLQ2i	whtle-		Chalk	R2
				JakL?usp=shari	Q4R2_QuLQ			
				ng	2iJakL?usp=s			
					haring			
22.				https://drive.go	https://drive.	Apply		
1				ogle.com/drive/	google.com/d	Geometric		
				folders/1P74qit	rive/folders/1	Distribution		
	6		Geometric	EpsYrwhtle-	P74qitEpsYr	Distribution	Talk &	T1,T3,
			Distribution	Q4R2 QuLQ2i	whtle-		Chalk	R2
			2150116001611	JakL?usp=shari	Q4R2 QuLQ		Jiun	
				ng	$\frac{\text{2iJakL?usp=s}}{\text{2iJakL?usp=s}}$			
					haring			
23.			Problems on	https://drive.go	https://drive.	Solve		T1,T3,
23.			binomial and	ogle.com/drive/	google.com/d			R2
				folders/1P74qit	rive/folders/1	1 *	Talk &	K2
			geometric	EpsYrwhtle-	P74qitEpsYr	binomial and	Chalk	
		2	distribution	Q4R2_QuLQ2i	whtle-	geometric	Chair	
				JakL?usp=shari	O4R2 QuLQ	distributions		
				Jakl (usp=snari	Q4KZ QULQ			

						Z STATION.	O VALUE BASIO EDUCATION	
				ng	2iJakL?usp=s			
					<u>haring</u>			
24.			Poisson	https://drive.go	https://drive.	Apply		
			distribution	ogle.com/drive/	google.com/d	Poisson		
				folders/1P74qit	rive/folders/1	distribution		
				EpsYrwhtle-	P74qitEpsYr		Talk &	T1,T3,
				Q4R2_QuLQ2i	whtle-		Chalk	R2
				JakL?usp=shari	Q4R2_QuLQ			
				ng	2iJakL?usp=s			
					<u>haring</u>			
				https://drive.go	https://drive.	Understand		
			*Applications	ogle.com/drive/	google.com/d	applications		
			of Graplical	folders/1P74qit	rive/folders/1			
			representatio	EpsYrwhtle-	P74qitEpsYr		Talk &	
			ns (content	Q4R2_QuLQ2i	whtle-		Chalk	
			beyond the	JakL?usp=shari	Q4R2_QuLQ			
			syllabus)	ng	2iJakL?usp=s			
					<u>haring</u>			
				https://drive.go	https://drive.			
				ogle.com/drive/	google.com/d			
			Tutorial /	folders/1P74qit	rive/folders/1			
			Bridge Class #	EpsYrwhtle-	P74qitEpsYr			
			1	Q4R2_QuLQ2i	whtle-			
				<u>JakL?usp=shari</u>	Q4R2_QuLQ			
				<u>ng</u>	2iJakL?usp=s			
					<u>haring</u>			
				UN	IT – 3			
25.				https://drive.go	https://drive.	Find		
				ogle.com/drive/	google.com/d	Continuous		
			Continuous	folders/1P74qit	rive/folders/1	Probability		
			Probability	EpsYrwhtle-	P74qitEpsYr	Distribution	Talk &	T2,T3,
		3	Distribution	Q4R2_QuLQ2i	whtle-		Chalk	R1
			Distribution	<u>JakL?usp=shari</u>	Q4R2_QuLQ			
				ng	2iJakL?usp=s			
					<u>haring</u>			
26.	7			https://drive.go	https://drive.	Find		T2,T3,
				ogle.com/drive/	google.com/d	Continuous		R1
			Continuous	folders/1P74qit	rive/folders/1	uniform		
			Uniform	EpsYrwhtle-	P74qitEpsYr	Probability	Talk &	
			Distribution	Q4R2_QuLQ2i	whtle-	Distribution	Chalk	
			Distribution	<u>JakL?usp=shari</u>	Q4R2_QuLQ			
				ng	2iJakL?usp=s			
					<u>haring</u>			
27.			Normal	https://drive.go	https://drive.	Apply	Talk &	T2,T3,

Springer as produced											
		Distribution	ogle.com/drive/	google.com/d	Normal	Chalk	R1				
			folders/1P74qit	rive/folders/1	Distribution						
			EpsYrwhtle-	P74qitEpsYr							
			Q4R2_QuLQ2i	whtle-							
			<u>JakL?usp=shari</u>	Q4R2_QuLQ							
			<u>ng</u>	2iJakL?usp=s							
				<u>haring</u>							
28.			https://drive.go	https://drive.	Find areas		T2,T3,				
			ogle.com/drive/	google.com/d	under the		R1				
			folders/1P74qit	rive/folders/1	normal curve						
		Area sunder the	EpsYrwhtle-	P74qitEpsYr		Talk &					
		Normal Curve	Q4R2_QuLQ2i	whtle-		Chalk					
			JakL?usp=shari	Q4R2_QuLQ							
			<u>ng</u>	2iJakL?usp=s							
				haring							
29.			https://drive.go	https://drive.	Find						
			ogle.com/drive/	google.com/d	applications						
		Applications of	folders/1P74qit	rive/folders/1	of normal						
		the Normal	EpsYrwhtle-	P74qitEpsYr	distribution	Talk &	T2,T3,				
			Q4R2_QuLQ2i	whtle-	distribution	Chalk	R1				
		Distribution	JakL?usp=shari	Q4R2_QuLQ							
			<u>ng</u>	2iJakL?usp=s							
				<u>haring</u>							
30.			https://drive.go	https://drive.	Find normal		T2,T3,				
		Normal	ogle.com/drive/	google.com/d	approximatio		R1				
		Approximation	folders/1P74qit	rive/folders/1	ns to all						
		to the Binomial,	EpsYrwhtle-	P74qitEpsYr	probability	Talk &					
		Gamma and	Q4R2_QuLQ2i	whtle-	distributions	Chalk					
		Exponential	<u>JakL?usp=shari</u>	Q4R2_QuLQ							
8		Distributions.	<u>ng</u>	2iJakL?usp=s							
				<u>haring</u>							
31			https://drive.go	https://drive.	Define						
			ogle.com/drive/	google.com/d	sampling						
		Fundamental	folders/1P74qit	rive/folders/1	distribution						
		Sampling	EpsYrwhtle-	P74qitEpsYr		Talk &	T2,T3,				
			Q4R2 QuLQ2i	whtle-		Chalk	R1				
		Distribution	<u>JakL?usp=shari</u>	Q4R2 QuLQ							
			<u>ng</u>	2iJakL?usp=s							
				<u>haring</u>							
32.			https://drive.go	https://drive.	Define		T2,T3,				
		Random	ogle.com/drive/	google.com/d	random	Talk &	R1				
			folders/1P74qit	rive/folders/1	sampling						
		Sampling	EpsYrwhtle-	P74qitEpsYr		Chalk					
			O4R2 OuLO2i	whtle-							
			Q4K2 QuLQ21	wntie-							

AND MATTERS AND ESTICATION

						25	S WELLE BY WAS DEPOSITION	
				<u>JakL?usp=shari</u>	Q4R2_QuLQ			
				ng	2iJakL?usp=s			
					<u>haring</u>			
				https://drive.go	https://drive.			
				ogle.com/drive/	google.com/d			
			Tutorial /	folders/1P74qit	rive/folders/1			
			Bridge Class #	EpsYrwhtle-	P74qitEpsYr			
			2	Q4R2_QuLQ2i	whtle-			
				JakL?usp=shari	Q4R2_QuLQ			
				ng	2iJakL?usp=s			
					haring			
			,		Examinations			
3				https://drive.go	https://drive.	Define		
				ogle.com/drive/	google.com/d	statistics		
			Some Important	folders/1P74qit	rive/folders/1			
		3	Statistics,	EpsYrwhtle-	P74qitEpsYr		Talk &	T2,T3,
			Sampling	Q4R2_QuLQ2i	whtle-		Chalk	R1
			Distributions	JakL?usp=shari	Q4R2_QuLQ			
				<u>ng</u>	2iJakL?usp=s			
					<u>haring</u>			
3				https://drive.g	https://drive	Apply		T2,T3,
			Sampling	oogle.com/dri	.google.com	central limit		R1
			Distribution of	ve/folders/1P7	/drive/folder	theorem	m 11 ^	
			Means and the	4qitEpsYrwhtl	s/1P74qitEp		Talk &	
			Central Limit	<u>e-</u>	sYrwhtle-		Chalk	
			Theorem	Q4R2_QuLQ	Q4R2_QuL			
			THEOTEIN	2iJakL?usp=s	Q2iJakL?us			
	9			haring	p=sharing	4 1 62		
3				https://drive.go	https://drive.	Apply S2		
				ogle.com/drive/	google.com/d	Distribution		
				folders/1P74qit	rive/folders/1		Tall: %	T2,T3,
			Sampling of S2	EpsYrwhtle-	P74qitEpsYr		Talk &	, ,
				Q4R2_QuLQ2i	whtle-		Chalk	R1
				JakL?usp=shari	Q4R2 QuLQ			
				ng	2iJakL?usp=s haring			
3				https://drive.go	https://drive.	Apply t and		T2,T3,
3				ogle.com/drive/	google.com/d	Apply t and F		
				folders/1P74qit	rive/folders/1	-		R1
			t –Distribution	EpsYrwhtle-	P74qitEpsYr	Distribution	Talk &	
			and F-	Q4R2_QuLQ2i	whtle-		Chalk	
			Distribution.	JakL?usp=shari	Q4R2_QuLQ		Chaix	
				ng	$\frac{\sqrt{4R2} - \sqrt{uEQ}}{2iJakL?usp=s}$			
				- 	haring			
					narmg			

						2	S VALLE BASIS ISSUCATION	
3				https://drive.	https://driv	Understan		
			• Evaluation	google.com/	e.google.c	d		
			of surface	drive/folders/	om/drive/f	application		
			and	1P74qitEpsY	olders/1P7	Tr		
			volume	rwhtle-	4qitEpsYr		Talk &	
			using	Q4R2 QuL	whtle-		Chalk	
			MATLAB	Q2iJakL?usp	Q4R2 Qu			
			(contents beyond the	<u>=sharing</u>	LQ2iJakL?			
			syllabus)		<u>usp=sharin</u>			
			Sylladus)		g			
				U	NIT – 4			
3				https://drive.go	https://drive.	Define		
			Statistical	ogle.com/drive/	google.com/d	inference and		
			Inference,	folders/1P74qit	rive/folders/1	classical		
			Classical	EpsYrwhtle-	P74qitEpsYr	methods of	Talk &	T2,R1,
				Q4R2_QuLQ2i	whtle-	estimation	Chalk	R2
			Methods of	<u>JakL?usp=shari</u>	Q4R2_QuLQ	Communici		
			Estimation	ng	2iJakL?usp=s			
					<u>haring</u>			
3				https://drive.go	https://drive.	Find mean		T2,R1,
				ogle.com/drive/	google.com/d	and error of		R2
			Estimating the	folders/1P74qit	rive/folders/1	point		
			Mean, Standard	EpsYrwhtle-	P74qitEpsYr	estimate	Talk &	
			Error of a Point	Q4R2_QuLQ2i	whtle-		Chalk	
			Estimate	<u>JakL?usp=shari</u>	Q4R2_QuLQ			
		4		<u>ng</u>	2iJakL?usp=s			
	10				<u>haring</u>			
4	10		D 11 4	https://drive.go	https://drive.	Find		
			Prediction	ogle.com/drive/	google.com/d	intervals and		
			Intervals,	folders/1P74qit	rive/folders/1	limits of		
			Tolerance	EpsYrwhtle-	P74qitEpsYr	estimate	Talk &	T2,R1,
			Limits,	Q4R2_QuLQ2i	whtle-		Chalk	R2
			Estimating the	<u>JakL?usp=shari</u>	Q4R2_QuLQ			
			Variance	ng	2iJakL?usp=s			
					haring			
4				https://drive.go	https://drive.	Apply		T2,R1,
				ogle.com/drive/	google.com/d	Estimating a		R2
			Estimating a	folders/1P74qit	rive/folders/1	Proportion	Tall- 0	
			Proportion for	EpsYrwhtle-	P74qitEpsYr	for single	Talk &	
			single mean	Q4R2_QuLQ2i	whtle-	mean	Chalk	
				JakL?usp=shari	Q4R2_QuLQ			
				ng	2iJakL?usp=s			
1			D:ff.	http://duir	haring	A1	T-11- 0	T2 D1
4			Difference	https://drive.go	https://drive.	Apply	Talk &	T2,R1,

					2	MALIE BASSO EDUCATION	
		between Two	ogle.com/drive/	google.com/d	estimation of	Chalk	R2
	11	Means,	folders/1P74qit	rive/folders/1	difference		
			EpsYrwhtle-	P74qitEpsYr	between two		
			Q4R2_QuLQ2i	whtle-	means		
			<u>JakL?usp=shari</u>	Q4R2_QuLQ			
			<u>ng</u>	2iJakL?usp=s			
				<u>haring</u>			
4			https://drive.go	https://drive.	Apply		T2,R1,
		Two	ogle.com/drive/	google.com/d	Proportions		R2
		Proportions for	folders/1P74qit	rive/folders/1	for Two		
		Two Samples	EpsYrwhtle-	P74qitEpsYr	Samples	Talk &	
		and Maximum	Q4R2_QuLQ2i	whtle-	~F	Chalk	
		Likelihood	JakL?usp=shari	Q4R2_QuLQ			
		Estimation.	<u>ng</u>	2iJakL?usp=s			
				<u>haring</u>			
4			https://drive.go	https://drive.	Define		
		General	ogle.com/drive/	google.com/d	Statistical		
		Concepts,	folders/1P74qit	rive/folders/1	Hypothesis		
		_	EpsYrwhtle-	P74qitEpsYr	-JF	Talk &	T2,R1,
		Testing a	Q4R2_QuLQ2i	whtle-		Chalk	R2
		Statistical	JakL?usp=shari	Q4R2_QuLQ			
		Hypothesis	<u>ng</u>	2iJakL?usp=s			
				<u>haring</u>			
4			https://drive.go	https://drive.	Apply Tests		T2,R1,
			ogle.com/drive/	google.com/d	Concerning a		R2
		Tests	folders/1P74qit	rive/folders/1	Single Mean		
			EpsYrwhtle-	P74qitEpsYr		Talk &	
		Concerning a	Q4R2_QuLQ2i	whtle-		Chalk	
		Single Mean	JakL?usp=shari	Q4R2_QuLQ			
			ng	2iJakL?usp=s			
				haring			
4			https://drive.go	https://drive.			
			ogle.com/drive/	google.com/d			
		Tutorial /	folders/1P74qit	rive/folders/1			
		Tutorial /	EpsYrwhtle-	P74qitEpsYr			
		Bridge Class	Q4R2 QuLQ2i	whtle-			
		#3	JakL?usp=shari	Q4R2 QuLQ			
			ng	2iJakL?usp=s			
				haring			
4			https://drive.go	https://drive.	Apply Tests		
		To also	ogle.com/drive/	google.com/d	Concerning a	T 11 0	TO D1
	12	Tests on Two	folders/1P74qit	rive/folders/1	Two Mean	Talk &	T2,R1,
	-	Means	EpsYrwhtle-	P74qitEpsYr	i wo ivican	Chalk	R2
			O4R2 QuLQ2i	whtle-			
			VTIVE QUEQUE	WHITE-			

No allin	VALUE BAND SOUCHDON

			1		<u> </u>	MILLE BASIC GOLCATION	
			<u>JakL?usp=shari</u>	Q4R2_QuLQ			
			ng	2iJakL?usp=s			
				<u>haring</u>			
4			https://drive.go	https://drive.	Solve		T2,R1,
			ogle.com/drive/	google.com/d	problems on		R2
			folders/1P74qit	rive/folders/1	mean testing		
	Proble	ems on	EpsYrwhtle-	P74qitEpsYr	8	Talk &	
	mean	test	Q4R2_QuLQ2i	whtle-		Chalk	
			JakL?usp=shari	Q4R2_QuLQ			
			ng	2iJakL?usp=s			
				<u>haring</u>			
4	Test	on a	https://drive.go	https://drive.	Apply Test		
	Single	<u>.</u>	ogle.com/drive/	google.com/d	of Single		
	Propos		folders/1P74qit	rive/folders/1	Proportion		
	Поро	ition	EpsYrwhtle-	P74qitEpsYr	Troportion	Talk &	T2,R1,
			Q4R2_QuLQ2i	whtle-		Chalk	R2
			JakL?usp=shari	Q4R2_QuLQ			
			ng	2iJakL?usp=s			
				haring			
5	Tests	on Two	https://drive.go	https://drive.	Apply Test		T2,R1,
	Propos		ogle.com/drive/	google.com/d	of Two		R2
	Поро	itions.	folders/1P74qit	rive/folders/1	Proportion		112
			EpsYrwhtle-	P74qitEpsYr	Troportion	Talk &	
			Q4R2_QuLQ2i	whtle-		Chalk	
			JakL?usp=shari	Q4R2_QuLQ		C114411	
			ng	2iJakL?usp=s			
				haring			
	Appli	cations of	https://drive.go	https://drive.	Understand		
	Signal		ogle.com/drive/	google.com/d	application		
			folders/1P74qit	rive/folders/1	application		
	System		EpsYrwhtle-	P74qitEpsYr		Talk &	
	,	nt beyond	O4R2 OuLO2i	whtle-		Chalk	
	the syl	llabus)	JakL?usp=shari	Q4R2_QuLQ		Cimii	
			ng	2iJakL?usp=s			
				haring			
5				https://drive.			
				google.com/d			
				rive/folders/1			
	M	ock Test -		P74qitEpsYr			
				whtle-			
				Q4R2_QuLQ			
				$\frac{\sqrt{4R2} - \sqrt{uEQ}}{2iJakL?usp=s}$			
				haring			
			T.	NIT – 5			<u> </u>
			υ	1111 – 3			

Page 88 CSE II YEAR I SEM

5			Introduction to	https://drive.go	https://drive.	Define		
			Stochastic	ogle.com/drive/	google.com/d	Stochastic		
			processes	folders/1P74qit	rive/folders/1	processes		
				EpsYrwhtle-	P74qitEpsYr		Talk &	T1,T3,
				Q4R2_QuLQ2i	whtle-		Chalk	R2
				<u>JakL?usp=shari</u>	Q4R2 QuLQ			
				<u>ng</u>	2iJakL?usp=s			
					<u>haring</u>			
5			Markov process	https://drive.go	https://drive.	Define		T1,T3,
				ogle.com/drive/	google.com/d	Markov		R2
				folders/1P74qit	rive/folders/1	process		
				EpsYrwhtle-	P74qitEpsYr		Talk &	
		5		Q4R2_QuLQ2i	whtle-		Chalk	
				<u>JakL?usp=shari</u>	Q4R2_QuLQ			
				<u>ng</u>	2iJakL?usp=s			
	13				<u>haring</u>			
5	13		Transition	https://drive.go	https://drive.	Define		
			Probability	ogle.com/drive/	google.com/d	Transition		
				folders/1P74qit	rive/folders/1	Probability		
				EpsYrwhtle-	P74qitEpsYr		Talk &	T1,T3,
				Q4R2_QuLQ2i	whtle-		Chalk	R2
				JakL?usp=shari	Q4R2_QuLQ			
				ng	2iJakL?usp=s			
					<u>haring</u>			
5			Transition	https://drive.go	https://drive.	Find		T1,T3,
			Probability	ogle.com/drive/	google.com/d	Transition		R2
			Matrix	folders/1P74qit	rive/folders/1	Probability		
				EpsYrwhtle-	P74qitEpsYr	Matrix	Talk &	
				Q4R2_QuLQ2i	whtle-	With	Chalk	
				JakL?usp=shari	Q4R2_QuLQ			
				<u>ng</u>	2iJakL?usp=s			
					<u>haring</u>			
5				https://drive.go	https://drive.	Solve		
				ogle.com/drive/	google.com/d	problems on		
			Problems on	folders/1P74qit	rive/folders/1	stochastic		
			stochastic	EpsYrwhtle-	P74qitEpsYr	process	Talk &	T1,T3,
				Q4R2 QuLQ2i	whtle-	Process	Chalk	R2
	, .		process	<u>JakL?usp=shari</u>	Q4R2_QuLQ			
	14			ng	2iJakL?usp=s			
					haring			
5				https://drive.go	https://drive.	Evaluate		T1,T3,
			First order	ogle.com/drive/	google.com/d	First order	Talk &	R2
			Markov process	folders/1P74qit	rive/folders/1	Markov	Chalk	
			1.1arko i process	EpsYrwhtle-	P74qitEpsYr		Chan	
					* *	process		

					25		
			Q4R2_QuLQ2i	whtle-			
			<u>JakL?usp=shari</u>	Q4R2 QuLQ			
			<u>ng</u>	2iJakL?usp=s			
				<u>haring</u>			
5		Higher order	https://drive.go	https://drive.	Evaluate		
		Markov process	ogle.com/drive/	google.com/d	Higher order		
			folders/1P74qit	rive/folders/1	Markov		
			EpsYrwhtle-	P74qitEpsYr	process	Talk &	T1,T3,
			Q4R2_QuLQ2i	whtle-		Chalk	R2
			<u>JakL?usp=shari</u>	Q4R2_QuLQ			
			ng	2iJakL?usp=s			
				haring			
6		n-step transition	https://drive.go	https://drive.	Find n-step		T1,T3,
		probabilities	ogle.com/drive/	google.com/d	transition		R2
			folders/1P74qit	rive/folders/1	probabilities	T 11 0	
			EpsYrwhtle-	P74qitEpsYr		Talk &	
			Q4R2_QuLQ2i	whtle-		Chalk	
			<u>JakL?usp=shari</u>	Q4R2_QuLQ			
			ng	2iJakL?usp=s			
			1 // 1 .	<u>haring</u>	75.00		
6			https://drive.go	https://drive.	Define		
			ogle.com/drive/	google.com/d	Markov		
			folders/1P74qit	rive/folders/1	chain	Talls 0-	T1 T2
		Markov chain	EpsYrwhtle-	P74qitEpsYr		Talk &	T1,T3,
			Q4R2_QuLQ2i	whtle-		Chalk	R2
			JakL?usp=shari	Q4R2_QuLQ			
			ng	2iJakL?usp=s			
			1-44m o. // J	haring	D.C.		T1 T2
6			https://drive.go	https://drive.	Define		T1,T3,
			ogle.com/drive/	google.com/d	Steady state		R2
		Steady state	folders/1P74qit	rive/folders/1	condition	Talk &	
	15	condition state	EpsYrwhtle-	P74qitEpsYr		Chalk	
		Condition	Q4R2_QuLQ2i JakL?usp=shari	whtle- Q4R2_QuLQ		Chaik	
				$\frac{Q4R2_QuLQ}{2iJakL?usp=s}$			
			ng	haring			
6			https://drive.go	https://drive.	Understand		
0			ogle.com/drive/	google.com/d			
			folders/1P74qit	rive/folders/1	Markov		
		Markov	EpsYrwhtle-	P74qitEpsYr	analysis	Talk &	T1,T3,
		analysis	Q4R2_QuLQ2i	whtle-		Chalk	R2
		anarysis	JakL?usp=shari	Q4R2_QuLQ		Chair	IX2
			ng	$\frac{Q4R2_QuLQ}{2iJakL?usp=s}$			
			<u> 445</u>	haring			
		1		narmg	1		

6		https://drive.go	https://drive.	Solve		T1,T3,						
		ogle.com/drive/	google.com/d	problems on		R2						
	Problems on	folders/1P74qit	rive/folders/1	Markov								
	Markov	EpsYrwhtle-	P74qitEpsYr	analysis	Talk &							
	analysis	Q4R2_QuLQ2i	whtle-	,	Chalk							
	anarysis	JakL?usp=shari	Q4R2 QuLQ									
		ng	2iJakL?usp=s									
			<u>haring</u>									
6	Applications in	https://drive.go	https://drive.	Understand								
	Fluid	ogle.com/drive/	google.com/d	application								
	Dynamics and	folders/1P74qit	rive/folders/1									
	Aerodynamics	EpsYrwhtle-	P74qitEpsYr		Talk &							
	(content beyond	Q4R2_QuLQ2i	whtle-		Chalk							
	syllabus)	<u>JakL?usp=shari</u>	Q4R2_QuLQ									
		ng	2iJakL?usp=s									
			<u>haring</u>									
6		https://drive.go	https://drive.									
		ogle.com/drive/	google.com/d									
	Tutorial /	folders/1P74qit	rive/folders/1									
	Bridge Class#	EpsYrwhtle-	P74qitEpsYr									
	4	Q4R2_QuLQ2i	whtle-									
		<u>JakL?usp=shari</u>	Q4R2_QuLQ									
		ng	2iJakL?usp=s									
			<u>haring</u>			<u> </u>						
		II Mid	Examinations									

SUGGESTED BOOKS:

TEXT BOOKS:

- 1. Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, Probability & Statistics for Engineers & Scientists, 9th Ed. Pearson Publishers.
- 2. S C Gupta and V K Kapoor, Fundamentals of Mathematical statistics, Khanna publications.
- 3. S. D. Sharma, Operations Research, Kedarnath and Ramnath Publishers, Meerut, Delhi

REFERENCE BOOKS:

- 1. T.T. Soong, Fundamentals of Probability And Statistics For Engineers, John Wiley & Sons Ltd, 2004.
- 2. Sheldon M Ross, Probability and statistics for Engineers and scientists, Academic Press.

IX. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

utcomes		Program Outcomes (PO)											Program Specific Outcomes (PSO)		
Course Outcomes	P01	PO2	PO3	PO4	PO5	90d	PO7	PO8	PO9	PO10	PO11	P012	PSO1	PSO2	PSO3
I	3	3	-	-	-	-	-	-	-	-	-	-	2	-	-
II	2	2		-	-	-	-	-	-	-	-	-	2	-	-
III	3	2	-	-	-	-	-	-	-	-	-	-	2	-	-
IV	3	2		-	-	-	-	-	-	-	-	-	2	-	-
V	2	1	•	-	-	-	-	-	-	-	-	-	1	-	-
AVG	2.	2.	-	-	-	-	-	-	-	-	-	-	1.8	-	-
	6	0													

1: Slight(Low)

2: Moderate (Medium)

3: Substantial(High)

4: None

QUESTION BANK: (JNTUH) DESCRIPTIVE QUESTIONS:

UNIT-I

Short Answer Questions

	Answer Questions	Dlaama	Course
		Blooms	Course
S.No	Questions	taxonomy	outcome
		level	
1	A random variable x has the following probability function:		1
	X 01 2 3 4 5 6 7	Understand	1
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	Find (i) k (ii) $P(x<6)$ (iii) $P(x>6)$		
2	Let X denotes the minimum of the two numbers that		
	appear when a	Understand	1
	pair of fair dice is thrown once. Determine		
	(i) Discrete probability distribution (ii) Expectation (iii) Variance.		
3	Define Event and Sample space	Remember	1
4	If the probability density function of Random variable	Understand	
	$f(x) = k \square 1 \square x^2 \square 0 \square x \square 1$ then find (i) k (ii)		1
	P[0.1 <x<0.2]< td=""><td></td><td></td></x<0.2]<>		
5	Find the probability distribution for sum of scores on dice if we throw two dice.	Understand	1
6	State Conditional probability and Bayes theorem.	Remember	1

7	The function $f(x)=Ax^2$, in $0 < x < 1$ is valid probability density function then find the value of A.	Understand	1
8	State Addition and Product Rules	Remember	1
9	A continuous random variable has the probability density function	Understand	1
10	Out of 24 mangoes, 6 mangoes are rotten. If we draw two mangoes, Obtain probability distribution of number of rotten mangoes that can be drawn.	Understand	1

Long Answer Questions

	-	Blooms	Course
S.N	Questions	taxonomy	outcome
0		level	
11	A coin is tossed 9 times. Find the probability of getting five heads.	Understand	1
12	A fair coin is tossed six times. Find the probability of getting four heads.	Remember	1
13	Assume that 50% of all engineering students are good in Mathematics. Determine the probability that among 18 engineering students exactly 10 are good in Mathematics.	Understand	1
14	Average number of accidents on any day on a national highway is 1.8. Determine the probability that the numbers of accidents are at least one.	Understand	1
15	If a bank received on the average 6 bad cheques per day, find the probability that it will receive 4 bad cheques on any given day.	Understand	1
16	20% of items produced from a goods factory are defective. If we choose 5 items randomly then find probability of non defective item.	Understand	1
17	Explain probability mass function and probability density of random variables.	Remember	1
18	Out of 800 families with 5 children each, how many would you expect to have (i)3 boys (ii)5girls (iii)either 2 or 3 boys? Assume equal probabilities for boys and girls.	Understand	1
19	Average number of accidents on any day on a national highway is 1.8. Determine the probability that the number of accidents is (i) at least one (ii) at most one.	Understand	1
20	A shipment of 20 tape recorders contains 5 defectives find the standard deviation of the probability distribution of the number of defectives in a sample of	Understand	1

10 randomly chosen for inspection.

UNIT - II

Short Answer Questions

		Blooms	Course
S.No	Questions	taxonomy	outcome
		level	
1	If X is Poisson variate such that $P(X=1) = 24P(X=3)$ then find the mean.	Understand	2
2	If a Poisson distribution is such that $P(X \square 1) \square \square P($	Understand	2
	$X \square 3$)then find (i) $P(X \square 1)$ (ii) $P(X \square 3)$ (iii) $P(2 \square 3)$	Onderstand	2
	$X \square 5$).		
3	If X is a random variable then Prove E[X+K]=	Understand	
	E[X]+K		2
	where 'K' constant.		
4	Prove that \Box $\overset{2}{\Box}$ $E(X^2)$ \Box $\overset{2}{\Box}$.	Understand	2
5	4 coins are tossed 160 times. Fit the Binomial distribution of getting number of heads.	Understand	2
6	Prove that the Poisson distribution is a limiting case of Binomial distribution.	Remember	2
7	Define different types of random variables with example.	Remember	2
8	Explain about Poisson distribution.	Remember	2
9	If $f(x)=k e^{\Box x}$ is probability density function in the interval, $\Box \Box x \Box \Box$, then find i) k ii) Mean iii) Variance iv) $P(0 < x < 4)$.	Understand	2
10	The variance and mean of a binomial variable X with parameters n and p are 4 and 3. Find i) $P(X=1)$ ii) $P(X \square 1)$ iii) $P(0 < X < 3)$.	Understand	2

Long Answer Questions

S.No	Questions	Blooms taxonomy	Course outcome
		level	
11	The probability if no misprint in a book is $e^{\Box 4}$ then	Understand	2
	find probability that a page of book contains exactly		
	two misprints.		
12	Determine the binomial distribution for which the	Understand	2
	mean is 4 and		
	variance 3		_
13	If X is Discrete Random variable then Prove that Variance (a $X + b$) = a^2 Variance(X).	Understand	2
14	Out of 20 tape recorders 5 are defective. Find the		

		ι	\sim
	standard deviation Of defective in the sample of 10 randomly chosen tape recorders. Find (i) P(X=0) (ii) P(X=1) (iii) P(X=2) (iv) P (1 <x<4).< td=""><td>Understand</td><td>2</td></x<4).<>	Understand	2
15	A car-hire firm has two cars which it hires out day by day. The number of demands for a car o n each day is distributed as a Poisson distribution with mean 1.5. Calculate the proportion of days (i) no which there is no demand (ii) on which demand is refused.	Understand	2
16	The average number of phone calls per minute coming into a switch board between 2 P.M. and 4 P.M. is 2.5. Determine the probability that during one particular minute (i) 4 or fewer calls (ii) more than 6 calls.	Understand	2
17	Two coins are tossed simultaneously. Let X denotes the number of heads then find i) $E(X)$ ii) $E(X^2)$ iii) $E(X^3)$ iv) $V(X)$.	Understand	2
18	Derive variance of the Poisson distribution.	Remember	2
19	Explain about Binomial distribution.	Remember	2
20	In eight throws of a die 5 or 6 is considered a success. Find the mean number of success.	Understand	2

UNIT - III Short Answer Questions

		Blooms	Course
S.No	Questions	taxonomy	outcome
		level	
1	If X is normally distributed with mean 2 and	Apply	
	variance 0.1, then		3
	find P ($x \square 2 \square 0.01$)?		
2	In a Normal distribution, 7% of the item are under 35 and 89% are under 63. Find the mean and standard deviation of distribution.	Apply	3
3	If X is a normal variate with mean 30 and standard deviation 5. Find the probabilities that i) $P(26 \square X \square 40)$ ii) $P(X \square 45)$.	Apply	3
4	The mean weight of 500 male students at a certain college is 75kg and the standard deviation is 7kg assuming that the weights are normally distributed find how many students weigh I) Between 60 and 78 kg ii) more than 92kg.	Apply	3
5	The mean and standard deviation of the box obtained by 1000 students in an examination are respectively 34.5 and 16.5. Assuming the normality of the distribution. Find the approximate number of students expected to obtain marks between 30	Apply	3

		V	· · · · · · · · · · · · · · · · · · ·
	and 60.		
6	Define population? Give an example.	Remember	3
7	Define sample? Give an example.	Remember	3
8	Define parameter and statistic.	Remember	3
9	Prove that Mean = Mode in Normal distribution.	Remember	3
10	Derive median of the Normal distribution.	Remember	3

Long Answer Questions

S.No	Questions	Blooms taxonomy level	Course outcome
11	For a normally distributed variate with mean 1 and standard deviation 3. Find i)P($3.43 \square X \square 6.19$) ii)P($-1.43 \square X \square 6.19$).	Apply	3
12	If the masses of 300 students are normally distributed with mean 68 kgs and standard deviation 3 kgs. How many students have masses (i) greater than 72 kg (ii) less than or equal to 64 kg (iii) between 65 and 71 kg inclusive.	Apply	3
13	The marks obtained in Statistics in a certain examination found to be normally distributed. If 15% of the students greater than or equal to60 marks, 40% less than 30 marks. Find the mean and standarddeviation.	Apply	3
14	A population consists of five numbers 2,3,6,8 and 11. Consider all possible samples of size two which can be drawn with replacement from this population. Find i) The mean of the population. ii) The standard deviation of the population. iii) The mean of the sampling distribution of means. iv) The standard deviation of the sampling distribution of means.	Apply	3
15	i)List all possible samples of size 3 that can be taken without replacement from the finite population. ii) Calculate the mean of each of the sampling distribution of means. iii) Find the standard deviation of sampling distribution of means.	Apply	3
16	The mean height of students in a college is 155 cms and standard deviation is 15. What is the probability that the mean height of 36 students is less than 157 cms.	Apply	3
17	A random sample of size 100 is taken from an infinite population	Apply	3

		Z	NO NELE MADO LOUSATON
	having the mean 76 and the variance 256. What is		
	the probability that x will be between 75 and 78.		
18	A population consists of 5, 10, 14, 18, 13, 24.		
	Consider all possible samples of size two which		
	can be drawn without replacement from this	Apply	3
	population. Find		
	i). The mean of the population.		
	ii). The standard deviation of the population.		
	iii). The mean of the sampling distribution of means.		
	iv).The standard deviation of the sampling distribution of means.		
19	A population consists of five numbers 4, 8, 12, 16,		
19	± ±		
	20, 24. Consider all possible samples of size two	Amplex	
	which can be drawn without replacement from this population. Find	Apply	3
	i). The mean of the population.		
	ii). The standard deviation of the population.		
	iii). The mean of the sampling distribution of means.		
	iv). The standard deviation of the sampling		
	distribution of means.		
20	Samples of size 2 are taken from the population 1, 2,		
	3, 4, 5, 6. Which can be drawn with replacement?		
	Find	Apply	3
	i).The mean of the population.		
	ii). The standard deviation of the population.		
	iii). The mean of the sampling distribution of means.		
	iv). The standard deviation of the sampling		
	distribution of means.		

UNIT - IV

Short Answer Questions

S.No	Questions	Blooms taxonomy	Course outcome
		level	
1	sample of 64 students have mean weight 70 kg can this be regarded	Apply	4
	as a sample from population with mean weight 56 kg and S.D 25kg.		
2	A sample of 900 members has mean of 3.4 and		
	S.D of 2.61 is this sample has been taken from a	Apply	4
	large population mean 3.25		
	and S.D 2.61. Also calculate 95% confidence		
	interval.		
3	It is claimed that a random sample of 49 tyres has		
	a mean life of 15200 kms this sample was taken	Apply	4
	from population whose mean		
	is 15150 kms and S.D is 1200 km test 0.05 level		
	of significant.		
4	In 64 randomly selected hour production mean and	Apply	

			THE STATE OF THE S
	S.D of production are 1.038 and 0.146 At 0.05 level		4
	of significant does this enable to reject the null		
	hypothesis = 1 againist alternative hypothesis : >1 .		
5	A trucking company rm suspects the claim that		
	average life of certain tyres is at least 28000 miles	Apply	4
	to check the claim rm puts 40 of this tyres on its		
	truck and gets a mean life time of 27463 miles		
	with a S.D 1348 miles can claim be true.		
6	The mean height of 50 male students who		
	participated in sports		
	is 68.2 inches with a S.D of 2.5. The mean	Apply	4
	height of male students who have not		·
	participated in sports is 67.2 inches with a S.D of		
	2.8. Test the hypothesis that the height of the		
	students who participated in sports more than the		
	students who have not participated in sports.		
7	Studying the flow of traffic at two busy		
	intersections between 4pm and 6pm to determine		
	the possible need for turn signals. It was found	Apply	
	that on 40 week days there were on the average	11 3	4
	247.3 cars approaching the first intersection from		4
	the south which made left turn, while on 30 week		
	days there were on the average 254.1 cars		
	approaching the first intersection from the south		
	made left turns . the corresponding samples S.DS		
	are 15.2and 12. Test the significant difference of		
	two means at 5% level.		
8	A manufacturer claims that at least 95% of the		
	equipment which he supplied to a factory	Apply	4
	conformed to specifications. An examination of		
	sample of 200 pieces of equipments received 18		
	were faulty test the claim at 0.05 level.		
9	Among the items produced by a factory out of 500,		
	15 were defective. In another sample of 400, 20	Apply	4
	were defective test the significant difference	- -	,
	between two proportions at 5% level.		
10	A manufacturer produced 20 defective articles in a		
	batch of 400. After overhauled it produced 10	Apply	4
	defective in a batch of 300. Has a machine being	1 PP1y	4
	improved after over hauling.		

Long Answer Questions

S.No	Questions	Blooms taxonomy level	Course outcome
11	A sample of 400 items is taken from a population whose		
	standard deviation is 10. The mean of sample is 40. Test	Apply	

APARTMO VALLE BASED LIDUCATION

	whether the sample has come from a population with mean 38 also calculate 95% confidence interval for the population.		4
12			
12	The means of two large samples of sizes 1000 and 2000	A 1	
	members are 67.5 inches and 68.0 inches respectively. Can the	Apply	4
	samples be regarded as drawn from the same population of S.D		
	2.5 inches.		
13	An ambulance service claims that it takes on the average 8.9		
	minutes to reach its destination In emergency calls. To check		
	on this claim the agency which issues license to Ambulance	Apply	4
	service has then timed on fifty emergency calls getting a mean	11 3	4
	of 9.2 minutes with 1.6minutes. What can they conclude at 5%		
	level of significance?		
14	Experience had shown that 20% of a manufactured product is		
14	of the top quality. In one day's production of 400 articles only	Annly	4
	50 are of top quality Test the hypothesis at 0.05 level.	Apply	4
15	According to norms established for a mechanical aptitude test		
	persons who are 18 years have an average weight of 73.2 with	Apply	4
	S.D 8.6 if 40 randomly selected persons have average 76.7 test	Арргу	4
	1		
1.0	the hypothesis: =73.2 against alternative hypothesis: >73.2.		
16	A sample of 100 electric bulbs produced by manufacturer		
	'A' showed a mean life time of 1190 hrs and s.d. of 90 hrs		
	A sample of 75 bulbs produced by manufacturer 'B'	Apply	4
	Showed a mean life time of 1230 hrs with s.d. of 120 hrs.		
	Is there difference between the mean life times of the two		
	brands at a significance level of 0.05.		
17	In a random sample of 60 workers, the average time taken by		
	them to get to work is 33.8 minutes with a standard deviation	Apply	4
	of 6.1 minutes .Can we reject the null hypothesis \square 32.6		
	minutes in favour of alternative null hypothesis \square 32.6 at \square		
	□ 0.05 level of significance.		
18	On the basis of their total scores, 200 candidates of a civil		
	service examination are divided into two groups; the first		
	group is 30% and the remaining 70%. Consider the first	Apply	4
	question of the examination among the first group, 40 had the	¹ ippiy	4
	correct answer. Whereas among the second group, 80 had the		
	correct answer. On the basis of these results, can one conclude		
	that the first question is not good at discriminating ability of		
	the type being examined here.		
19	A cigarette manufacturing firm claims that brand A line of		
	cigarettes outsells its brand B by 8% .if it is found that 42 out of	Apply	4
	a sample of 200 smokers prefer brand A and 18 out of another		
	sample of 100 smokers prefer brand B. Test whether 8%		
	difference is a valid claim		
20	If 48 out of 400 persons in rural area possessed 'cell' phones		
	while 120 out of 500 in urban area. Can it be accepted that	Apply	4
	the proportion of 'cell' phones in the rural area and Urban	11.7	т
	area is same or not. Use 5% of level of significance.		
	area to barrie of not. Obe 570 of he for of biginficance.		

UNIT - V Short Answer Questions

S.No	Questions	Blooms taxonomy level	Course outcome
1	Define Stochastic Process.	Remember	5
2	What is First Passage Time.	Remember	5
3	What is Absorbing State.	Remember	5
4	Define Markov Process.	Remember	5
5	Define First Order Markov Process.	Remember	5
6	Define Higher Order Markov Process.	Remember	5
7	Define Markov Chain.	Remember	5
8	What is Transition Probability.	Remember	5
9	Define Time Inhomogeneous Process.	Remember	5
10	What is parameter estimation	Remember	5

Long Answer Questions

S.No	Questions	Blooms taxonomy	Course outcome
		level	
11	Explain about state space	Understand	5
12	Explain about Discrete Stochastic Variable	Understand	5
13	Explain about Continuous Stochastic Variable	Understand	5
14	Explain about time of Absorption.	Understand	5
15	Explain about Recurrence time.	Understand	5
16	Explain about m-order Markov Process.	Understand	5
17	Explain about Transition Probability Matrix.	Understand	5
18	Explain about n-step Transition Probabilities.	Understand	5
19	Explain about steady state condition.	Understand	5
20	Explain about Markov Analysis.	Understand	5

OBJECTIVE QUESTIONS (JNTUH)

UNIT - I

1. Suppose a fair six-sided die is rolled once. If the value on the die is 1, 2, or 3, the die is rolled a second time. What is the probability that the sum total of values that turn up is at least 6?

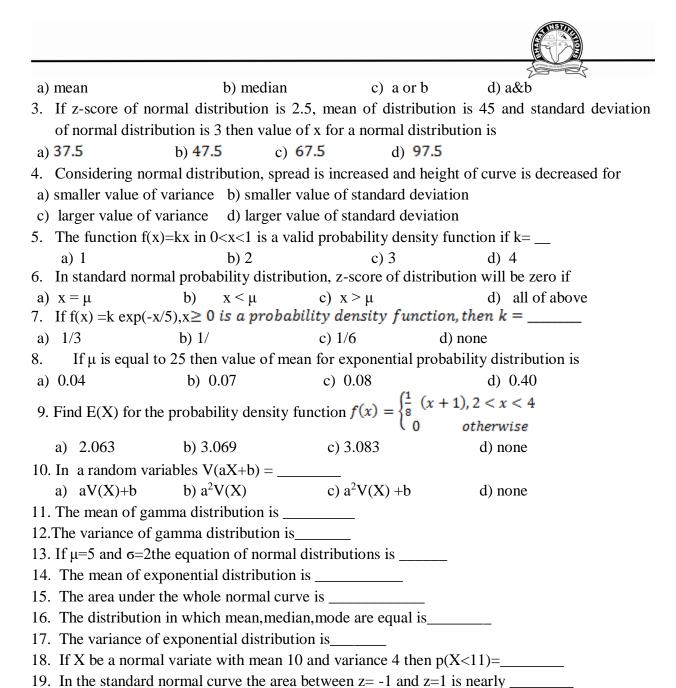
a) 2/3

b) 5/12

c) 10/21

d) 1/6

2.	n random exper	iment, observation	s of random variable are	e classified as	
a)	functions	b) trials	c) composition	d) eve	nts
3.	Probability distr	ibution of discrete	random variable is class	sified as	
a)	probability mas	s function b) interior mass function		
	c) probabil	lity mass function	d) continuous mas	s function	
4. ′	Types of probab	ility distributions b	y taking their functions	of considerat	tions must
	include	-			
a)	posterior probal	bility distribution	b) discrete probab	oility distribut	tion
	c) continuo	ous probability dist	ribution d) both b	and c	
	5. Out of all the	2-digit integers be	tween 1 and 100, a 2-di	git number ha	as to be selected at
			that the selected numb	=	
	a) 77/90	b) 12/9	o) 78/90)	d) 13/20
6.	Value which is o	obtained by multipl	lying possible values of	random varia	ble with
			ual to weighted average		
	a) expected	•	ghted value c) cumu		d) discrete value
7.	Γail or head, one	e or zero and girl ar	nd boy are examples of		,
a)	complementary	events b) non complementary ev	vents	
	c) function	al events	d) non-functional	events	
8.	If number of tr	ials are 8 and proba	ability of success are 0.6	55 then mean	of negative
	probability dis	tribution is			
;	a) 7.35	b) 12.31	c) 8.65	d) 5.2	0.0
9. If	two fair coins a	re flipped and at lea	ast one of the outcomes	is known to b	e a head,
	what is the pro	bability that both o	outcomes are heads?		
a)	R > 0	b) $R > = 0$	c) $R < 0$	d) R =	= 0
	10. If value of	p is 0.60 and value	of n is 3 whereas rando	om variable x	is equal to 4 then
	value of z-	-score of distribution	on is		
a	0.59 b)	1.59	c) 2.59	d) 2.68	
	11. If X and Y	are independent ra	ndom variable then E(Σ	(Y)=	_
	12. Let X be a	random variable w	hich is uniformly chose	en from the se	t of positive odd
	numbers le	ess than 100.then th	ne expectation $E(X)$ is _		
13. i	k is a constant	then variance(k)=_			
	14. A six faced	fair dice is rolled a	a large no. of times the	mean of the o	utcomes is
	15. Maximum	value of a probabili	ity is		
	16. The probab	oility of getting a ta	il in tossing a coil is		
	17. The mean of	of the probability di	istribution of the numbe	r on face of a	die in throwing
	a die is				
	18. if $f(x)=Ax^2$	$2 \text{ in } 0 \le x \le 1 \text{ is a p}$	robability distribution f	unction then A	A=
	19. A coin is to	ossed 3 times. The p	probability of obtaining	two heads wi	ll be
		•	istribution of the numbe		
	of a balance				1


9.

Page 101 CSE II YEAR I SEM

UNIT - II

1.	1.1	0 0	received by a bank and probability distribution	d probability of approval is
a)			•	2028
,	<i>'</i>	inomial distribution is	<i>'</i>	
	npq	b) nq/p	c) np /q	d) np
	= =		then the mean is	, •
a)	50	b) 80	c) 100	d) 120
4.	In a binomial dist	ribution p=		
a)) q	b) 1+q	c) 1-q	d) none
5.	In a negative binor	mial distribution of pro	bability, random variab	le is also classified as
a)	discrete random v	variable	b) continuous waiting	time random variable
c)	discrete negative b	inomial variabled) disc	crete waiting time rando	om variable
6.	In Poisson probabi	lity distribution, if valu	e of λ is integer then di	stribution will be
	a) positive moda	al b) bimod	lal c) unimod	al d) negative modal
7.	If mean of binomia distribution is	l probability distribution	on is 25 then mean of P	oisson probability
a) 25	b) 40	c) 50	d) 70
8	A fair coin is tossed	six times. Find the pro	obability of getting four	heads
a)	15/64	b) 5/16	c) 3/10 d) 1	none
9.]	In binomial probabi	lity distribution, succe	ss and failure generated	by trial is respectively
den	oted by			
) p-q	b) p+q	c) p and q	<i>'</i>
10.]	How many possible	outcomes are there for	r a binomial distribution	
	1) 0	b) 1	c) 2	d) 3
		oisson distribution is _		
		= -	f obtaining two heads w	vill be
		n distribution is		
		ial distribution is		
	=		n terms of q is	
			nial distribution then p=	
			and variance is 10 is	
		in a binomial distribut		4 Califordia-allocation
		mai distribution is 8 ar	nd variance is 6 then mo	de of this distribution
	S	nomial distribution is _		
20. 1	The variance of a on	ioiiiai distribution is _	 -	
UNIT - I	II			
	•		exponential probability	
a) 0.	<i>'</i>	,	0.325 d) 0.425	5
2. In	normal distribution	n the mode is equal to_		

UNIT - IV

- 1. The value set for α is known as
 - a. the rejection level
- b. the acceptance level
- c. the significance level
- d. the error in the hypothesis test
- 2. The hypothesis that an analyst is trying to prove is called the
 - a. elective hypothesis
- b. alternative hypothesis
- c. optional hypothesis
- d. null hypothesis
- 3. A type II error occurs when
 - a. the null hypothesis is incorrectly accepted when it is false

20. In a normal distribution mean deviation: standard deviation=_____

- b. the null hypothesis is incorrectly rejected when it is true
- c. the null hypothesis is incorrectly rejected when it is true
- d. the test is biased
- 4. Suppose a 95% confidence interval for the proportion of Americans who exercise regularly is 0.29 to 0.37. Which one of the following statements is FALSE?
 - a). It is reasonable to say that more than 25% of Americans exercise regularly.
 - b). It is reasonable to say that more than 40% of Americans exercise regularly.
 - c). The hypothesis that 33% of Americans exercise regularly cannot be rejected.
 - d). It is reasonable to say that fewer than 40% of Americans exercise regularly.
- 5. In hypothesis testing, a Type 2 error occurs when
 - a). The null hypothesis is not rejected when the null hypothesis is true.
 - b). The null hypothesis is rejected when the null hypothesis is true.
 - c). The null hypothesis is not rejected when the alternative hypothesis is true.
 - d). The null hypothesis is rejected when the alternative hypothesis is true.
- 6. By taking a level of significance of 5% it is the same as saying
 - a) We are 5% confident the results have not occurred by chance
 - b) We are 95% confident that the results have not occurred by chance
 - c) We are 95% confident that the results have occurred by chance
 - d) None of the above
- 7. Two types of errors associated with hypothesis testing are Type I and Type II. Type II error is committed when
 - a) We reject the null hypothesis whilst the alternative hypothesis is true
 - **b**) We reject a null hypothesis when it is true
 - c) We accept a null hypothesis when it is not true
 - d) all the above

8. For a random sample	le of 9 women, the average	e resting pulse rate is x= 1	76 beats per minute,
and the sample star	ndard deviation is $s=5$. Th	e standard error of the sa	mple mean is
a)0.557	b)0.745	c)1.667	d)2.778

9. Which of the following is true of the null and alternative hypotheses?

a) Exactly one hypothesis must be true	a)) Exactl	y one	hypotl	hesis	must	be	true
--	----	----------	-------	--------	-------	------	----	------

- b) both hypotheses must be true
- c) It is possible for both hypotheses to be true
 - d) It is possible for hypothesis to be true
- 10. A null hypothesis can only be rejected at the 5% significance level if and only if:
 - a) A 95% confidence interval includes the hypothesized value of the parameter
 - b) A 95% confidence interval does not include the hypothesized value of the parameter

c) The null hypothesis is void

d) An alternative hypothesis is void

11. Null hypothesis is defined as_____

12. Alternate hypothesis is defined as_____

13. Type II error in hypothesis testing is_____

14. A hypothesis is true but rejected this is an error of type_____

15. A single tail test is used when _____

16. A die is thrown 256 times an even digit turns up 150 times then die is _____

				STORES.
7. A d	ie is thrown 100 times	an even digit turns up	10 times then die is _	
8. Rar	ndom sample of 400 pro	oducts contains 52 defe	ective items standard	error of proportion
	nypothesis is false but a	=		
	eggs are taken from a	large consignment and	d 50 are found spoiled	l standard error of
pro	pportion is			
J NIT -	V			
1.	The collection of all s	sample functions cons	titutesof a rand	lom process
	a) statistical mean	b) ensemble	c) variance	d)none
2.	A random process car	n be characterized by	averages	
	a) 1	b) 2	c) 3	d)none
3.	Practically, no proces	ss is stationar	cy .	
	a) wide sense	b) normal sense	c) strict sense	d) none
4.	A stochastic variable	which takes finite nur	mber of values is calle	ed
	a) discrete	b) continuous	c) gaussian	d) none
5.	A markov process is	if the transition pro	obabilities are independent	ndent of time
	a) homogeneous	b) non homogeneo	ous c) time homogene	ous d) none
	A markov process is	-		
a)	markov analysis b) m	narkov chain c)	markov recurrence d)	none
7.	Stochastic process is		-	
	a) statistic	, 1	c) random	*
8.	A stochastic variable			
	a) discrete	b) continuous	. •	/
	In general, the ensem	-	=	=
	moderate b) sa	<i>'</i>	,	none
). The random process i			
	independent	, I	,	,
	. The random process a	=	ant is a	-
	. A markov process is d			
	. The time of absorption			
	. A markov chain is def			
	. The transition probabi	•		
	A stationary random p			
	The recurrence time of			
	A random process with	n time averages equal	to ensemble averages	is referred to as
	process	I (° 1		
	A markov analysis is c			
20.	A true strict sense rand	lom process ranges fro	om to	-

WEBSITES:

- 1. www.geocities.com/siliconvalley/2151/matrices.html
- 2. www.mathforum.org/key/nucalc/fourier.html
- 3. www.mathworld.wolfram.com
- 4. www.eduinstitutions.com/rec.htm
- 5. www.isical.ac.in
- 6. http://nptel.ac.in/courses/111108066/
- 7. http://nptel.ac.in/courses/111106051/
- 8. http://nptel.ac.in/courses/111102011/
- 9. http://nptel.ac.in/syllabus/syllabus.php?subjectId=111103019

EXPERT DETAILS:

INTERNATIONAL

Prof. Diliberto, Stephen P.L.

Research Area: Ordinary Differential Equations,

Postal Address: Department of Mathematics

University of California, Berkeley.

Email ID: dliberto@math.berkeley.edu

NATIONAL

1. Prof. N.S. Gopal Krishna

Research Area: Differential Equations,

Postal Address: Department of Mathematics,

IIT Mumbai.

Email ID: gopal@math.iitb.ac.in

2. Prof. S. Kesavan

Research Area: Analysis and Differential Equations,

Postal Address: Department of Mathematics, Institute of Mathematical Sciences, Chennai.

Email ID: kesh@imsc.res.in

JOURNALS:

INTERNATIONAL

- 1. Journal of American Mathematical Society
- 2. Journal of differential equations Elsevier
- 3. Pacific Journal of Mathematics
- 4. Journal of Australian Society
- 5. Bulletin of "The American Mathematical Society"
- 6. Bulletin of "The Australian Mathematical Society"
- 7. Bulletin of "The London Mathematical Society"

NATIONAL

- 1. Journal of Interdisciplinary Mathematics
- 2. Indian Journal of Pure and Applied Mathematics
- 3. Indian Journal of Mathematics
- 4. Proceedings of Mathematical Sciences
- 5. Journal of Mathematical and Physical Sciences.
- 6. Journal of Indian Academy and Sciences

LIST OF TOPICS FOR STUDENT SEMINARS:

- 1. Orthogonal trajectory.
- 2. Natural law of growth and decay.
- 3. Newtons law of cooling.
- 3. Evaluation of double and triple integration.
- 4. Geometrical interpretation of curl and divergent.

CASE STUDIES / SMALL PROJECTS:

- 1. Describe about the Quadratic forms and its nature.
- 2. Discuss about the Concept of simple harmonic motion and electrical circuits in detail.
- 3. Describe about the geometrical meaning of double and triple integration.
- 4. Discuss about the orthogonal trajectory with examples.
- 5. Discuss the applicability of vector integral theorem.